Centre CERIT-SC

scientific computations,

collaborative research & support services

Tomáš Rebok

CERIT-SC, Institute of Computer Science MU

MetaCentrum, CESNET z.s.p.o.

(rebok@ics.muni.cz)

NASARYKUMA BILLING

- Centre CERIT-SC brief introduction
- National Grid Infrastructure (NGI) for research computations

Overview

- CERIT-SC & NGI
- Research support by CERIT-SC
- Selected research collaborations
- Additional services available to academic research community

Cerit scientific cloud

Centre CERIT-SC

A computing and research centre operating at Institute of Computer Science, Masaryk University in Brno

- long-term history (\rightarrow long-term experience in ICT science)

- CERIT-SC evolved from Supercomputing Center Brno (established in 1994), and
- participates on the operation of National Grid Infrastructure

Our mission:

http://www.cerit-sc.cz

production services for computational science

- high-performance computing clusters
- large data storage, back-ups and data archives
- web portals & projects' back-office

- an application of top-level ICT in the science

- own research in e-infrastructures (know-how)
- novel forms of infrastructure utilization (experimental usage support)
- research collaborations with other science areas

Centre CERIT-SC

Centre is a part of the Institute of Computer Science MU

- a part of university supporting/developing ICT services
- because of close collaboration with CESNET, ICS can perform as an "man in the middle" for an arrangement of services' specialization to suit you best
 - if the CESNET services suit you use them
 - if not, let us know to make them better suitable

National Grid Infrastructure (NGI) for research computations

National Grid Infrastructure (NGI)

CERIT-SC resources integrated into the NGI

- operated by MetaCentrum NGI (CESNET) since 1996
- MetaCentrum was established by CERIT-SC (previously called SCB)

National Grid Infrastructure

Integrates medium/large HW centers (clusters, powerful servers, storages) of several universities/institutions

• \rightarrow environment for work/collaboration in the area of research computations and data handling

http://www.metacentrum.cz

NGI further integrated into the European Grid Infrastructure (EGI.eu)

Computing clusters

a group of "common" interconnected computers

(previously)

Computing clusters

a group of "common" interconnected computers

(now)

MetaCentrum Virtual Organization (Meta VO)

Available to all academic users from Czech universities, Academy of Science, research institutes, etc.

- commercial bodies just for public research

Offers:

http://metavo.metacentrum.cz

- computing resources
- storage resources
- application programs

After registration, **all the resources/services are available free of charge**

- users "pay" via publications with acknowledgements

 \rightarrow results in user priorities in cases of high load

MetaVO – basic characteristics

After registration, the resources are available without any administrative burden

- $\rightarrow \sim$ immediately (based on the actual load)
- no resource applications have to be provided

User accounts periodically extended every year

- a proof of continuing user's academic affiliation
- publications with acknowledgements simultaneously reported
 - could help us when asking for funds from public authorities

Best-effort service

Meta VO – computing resources available

Computing resources: ca 10000 cores (x86_64)

- nodes with lower number of computing cores: 2x4-8 jader
- nodes with medium number of comp. cores (SMP nodes): 32-80 cores
- memory (RAM) up to 1 TB per node
- nodes with high number of computing cores:
 - 288 cores, 6 TB of RAM
 - 384 cores, 6 TB of RAM
- other "exotic" hardware:
 - nodes with GPU cards, etc.

CERIT-SC: important resource provider (4512 cores)

http://metavo.metacentrum.cz/cs/state/hardware.html

Meta VO – storage resources available

ca 1 PB (1063 TB) for operational data

- centralized storage arrays distributed through various cities in the CR
- user quota 1-3 TB on each storage array

ca 19 PB (19000 TB) for archival data

- "unlimited" user quota

CERIT-SC: important resource provider (5 PB)

Meta VO – software available

~ 300 different applications (commercial & free/open s.)

- see http://meta.cesnet.cz/wiki/Kategorie:Aplikace

development tools

- GNU, Intel, and PGI compilers, profiling and debugging tools (TotalView, Allinea), ...

mathematical software

- Matlab, Maple, Mathematica, gridMathematica, ...

application chemistry

- Gaussian 09, Gaussian-Linda, Gamess, Gromacs, ...

material simulations

- Wien2k, ANSYS Fluent CFD, Ansys Mechanical, Ansys HPC...

structural biology, bioinformatics

- CLC Genomics Workbench, Geneious, Turbomole, Molpro, ...

CERIT-SC: important commercial SW provider

CERIT-SC & NGI

Centre CERIT-SC & NGI

CERIT-SC is an important NGI partner

HW & SW resources provider

SMP nodes (1600 cores) HD nodes (2624 cores) SGI UV node (288 cores, 6 TB RAM) SGI UV node (384 cores, 6 TB RAM) storage capacity (~ 5 PB)

significant personal overlaps with NGI exist

remember, CERIT-SC (SCB) established MetaCentrum NGI

 $\bullet \rightarrow \text{much research/work is performed in collaboration}$

http://www.cerit-sc.cz

CERIT-SC & NGI – production services

High-performance computing

parallel/distributed computations

Data back-ups and archiving

- multiple storage systems in geographically distant locations
- advanced hierarchical storage systems

Web portals & projects' back-office

- for general public & dissemination web pages, RSS feeds, blogs, social media, ...
- for projects' internal needs

data & document servers, request tracking, messaging, meeting planners, collaborative environments, ...

Authentication and Authorization Infrastructure, Identity Management, Data Security, ...

Research support by CERIT-SC

Research support by CERIT-SC

Fact I. Common HW centers provide just a "dumb" power without any support how to <u>effectively use it</u>

Fact II. Common HW centers do not participate on the users' research <u>aiming to help them</u> with ICT problems

CERIT-SC collaborates with its users:

- to help them effectively use the provided resources
- to help them to cope with their ICT research problems
 focusing on an application of top-level ICT in the science

Selected research collaborations

Selected (ongoing) collaborations I.

3D tree reconstructions from terrestrial LiDAR scans

- partner: Global Change Research Centre Academy of Sciences of the Czech Republic (*CzechGlobe*)
- the goal: to propose an algorithm able to perform fully-automated reconstruction of tree skeletons (main focus on Norway spruce trees)
 - from a 3D point cloud
 - scanned by a LiDAR scanner
 - the points provide information about XYZ coordinates
 + reflection intensity
 - the expected output: 3D tree skeleton
- the main issue: overlaps (\rightarrow gaps in the input data)

Selected (ongoing) collaborations I.

3D tree reconstructions from terrestrial LiDAR scans – cont'd

- the diploma thesis proposed a novel innovative approach to the reconstructions of 3D tree models
- the reconstructed models used in subsequent research
 - determining a statistical information about the amount of wood biomass and about basic tree structure
 - parametric supplementation of green biomass
 (young branches+ needles) a part of the PhD work
 - importing the 3D models into tools performing various analysis (e.g., DART radiative transfer model)

Selected (ongoing) collaborations II.

3D reconstruction of tree forests from full-wave LiDAR scans

- subsequent PhD thesis, a preparation of joint project
- the goal: an accurate 3D reconstruction of tree forests scanned by aerial full-waveform LiDAR scans
 - possibly supplemented by hyperspectral or thermal scans,

in-situ measurements, ...

Selected (ongoing) collaborations III.

An application of neural networks for filling in the gaps in eddy-covariance measurements

- partner: Global Change Research Centre Academy of Sciences of the Czech Republic (*CzechGlobe*)
- the goal: to propose a novel fully-automated method for gap-filling of eddy-covariance data
 - based on historical measurements and self-learning
 - accompanying characteristics temperature, pressure, humidity, …
- main issues:
 - historical data have to be taken into account
 - the forest evolves (grows)

Selected (ongoing) collaborations IV.

Identification of areas affected by geometric distortions in aerial landscape scans

- partner: Global Change Research Centre Academy of Sciences of the Czech Republic (*CzechGlobe*)
- the goal: to propose a novel, fully-automated method for an identification of regions within the scans, where the airplane suddenly deviated
 - and thus introduce distortions in the scanned data
 - \rightarrow image processing
 - current approaches are suitable for determining distortions in the scans of regular objects (like buildings in the city scans) rather than their determination in the diverse vegetable

main issue: diverse tree structure

Selected (ongoing) collaborations V.

De-novo sequencing *Trifolium pratense*

- partner: Institute of Experimental Biology SCI MU
- the goal: evaluation and optimization of available tools for DNA reads corrections and assembly
 - *Trifolium pratense* analysis results in large computations
 - ~ 500 GB of memory
 - computations take weeks/months
- main issue: computation demands

Selected (ongoing) collaborations VI.

Virtual microscope, pathologic atlasses

- partner: Faculty of Medicine MU
- the goal: an implementation of virtual microscope for dermatology atlas (web application)
 - shows the tissue scans
 - resolution up to 170000x140000 pixels
 - composed from tiles (up to 30000 of tiles)
 - allows to "focus" like real microscope
- main issues:
 - optimization of scans processing (GPU)
- the result is available at http://atlases.muni.cz

Selected (ongoing) collaborations VII.

Segmentation of live cell cultures in microscope images

- partner: University of South Bohemia
- the goal: to determine interesting/important objects in the images of live cell cultures, filtering the noise out of attention
 - implemented in C and CUDA
 - achieved acceleration: 10x 1000x

Selected (ongoing) collaborations VIII.

An algorithm for determination of problematic closures in a road network

- partner: *Transport Research Centre, Olomouc*
- the goal: to find a robust algorithm able to identify all the road network break-ups and evaluate their impacts
- main issue: computation demands
 - the brute-force algorithms fail because of large state space
 - 2 algorithms proposed able to cope with multiple road closures

Selected (ongoing) collaborations IX.

- Biobanking research infrastructure (BBMRI_CZ)
 - partner: Masaryk Memorial Cancer Institute, Recamo
- Propagation models of epilepsy and other processes in the brain
 - partner: MED MU, ÚPT AV, CEITEC
- Photometric archive of astronomical images
- Extraction of photometric data on the objects of astronomical images
 - 2x partner: partner: Institute of theoretical physics and astrophysics SCI MU
- Bioinformatic analysis of data from the mass spectrometer
 - partner: Institute of experimental biology SCI MU
- Synchronizing timestamps in aerial landscape scans
 - partner: CzechGlobe
- Optimization of Ansys computation for flow determination around a large two-shaft gas turbine
 - partner: SVS FEM
- 3.5 Million smartmeters in the cloud
 - partner: CEZ group, MycroftMind

Additional services available to academic research community

Storage and archival services

The need to archive long-term scientific data increases

 e.g., archival of data used in experiments in order to allow further usage or results revision

Centralized storage infrastructure:

- A hierarchical storage systems available located in Pilsen, Jihlava (CERIT-SC) and Brno the total capacity available: ca 19 PB
- suitable for backups, archival, and data sharing
- additional services:

FileSender OwnCloud

Remote collaboration support

Support for interactive collaborative work in real-time

videoconferences

HD videoconferencing support via H.323 HW/SW equippment

webconferences

SD videoconferencing support via Adobe Connect (Adobe Flash)

special transmissions

HD, UHD, 2K, 4K, 8K with compressed/uncompressed video transmission (UltraGrid tool)

IP telephony

Support for offline content access

- streaming
- video archive

Security services

Security incidents handling

- detailed monitoring of possible security incidents
- the users/administrators are informed about security incidents, and
- helped to resolve the incident
- additional services:

seminars, workshops, etc.

Security teams CSIRT-MU and CESNET-CERTS

- several successes:
 - e.g., Chuck Norris botnet discovery

Federated identity management

Czech academic identity federation eduID.cz

- provides means for inter-organizational identity management and access control to network services, while respecting the privacy of the users
- users may access multiple applications using just a single password
- service provider administrators do not have to preserve user's credentials and implement authentication
- user authentication is always performed at the home organization, user credenitals are not revealed to the service providers

http://www.eduid.cz

PKI – users and servers certificates

CESNET CA certification authority

- provides the users with TERENA (Trans-European Research and Education Networking Association) certificates
 - usable for electronic signatures as well as for encryption
- CESNET CA services:
 - issues personal certificates
 - issues certificates for servers and services
 - certificates registration offices
 - certificates certification offices

http://pki.cesnet.cz

Mobility and roaming support

Eduroam.cz

 idea to enable transparent usage of (especially wireless) networks of partner (Czech as well as abroad) institutions

http://www.eduroam.cz

Communication infrastructure and its monitoring

37

The basis of all the services: high-speed computer network

- 100 Gbps, called CESNET2
- interconnected with pan-european network GÉANT

and its monitoring

- detailed network monitoring (quality issues as well as individual nodes behaviour) available
- automatic detection of various events, anomalies, etc.

Conclusions

Conclusions I.

There're three computing e-infrastructures being established in the Czech Republic

IT4Innovations (VŠB-Technical University of Ostrava)

- currently ca 3300 cores (around 30000 cores planned)
- intended for large production academic/commercial computations (more resources available thanks to integration into PRACE) on more or less homogeneous infrastructure
 - formal applications (research project proposals) required
 - financial participation required (highly welcomed)

National Grid Infrastructure + CERIT-SC

- currently ca 10000 cores, available for public research only
- free of charge, heterogeneous resources (exotic HW available)
- intended for common small-to-medium scientific computations or IT4I projects preparation

Conclusions II.

CERIT-SC aims to provide additional services beyond the scope of common HW centers

an environment for collaborative research

- not only HW/SW provider, but
- \rightarrow a real collaboration of IT experts and users

we focus on <u>novel and beneficial approaches</u> to e-infrastructure usage

big focus on internal research in e-infrastructure services

we collaborate with several EU projects, including the ESFRI ones

participation in the preparation of EU H2020 projects

however, we're also interested in collaboration with smaller groups/individuals

 currently, the interest exceeds our (personal) capacities (we have to choose among the collaboration proposals)

Conclusions III.

What are you going to see next:

- we'll show several Galaxy computations
 - the Galaxy web portal runs on a server
 - and submits your computations to the computing NGI infrastructure on background

EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

The CERIT Scientific Cloud project (reg. no. CZ.1.05/3.2.00/08.0144) is supported by the *Operational Program Research and Development for Innovations*, priority axis 3, subarea 2.3 *Information Infrastructure for Research and Development.*

http://metavo.metacentrum.cz

http://www.cerit-sc.cz