MetaCentrum hands-on seminar

Tomáš Rebok, Pavel Fibich
MetaCentrum, CESNET z.s.p.o.
CERIT-SC, Masaryk University
(rebok@ics.muni.cz, pavel.fibich@cesnet.cz)
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
CESNET department

since 1996, responsible for coordinating and managing grid activities in the Czech Republic on behalf of the Czech NGI

- comprises of clusters, powerful servers and storages provided by CESNET itself as well as cooperating institutions/universities
- → an environment for collaboration in the area of computations and data processing/management
- interconnected with European Grid Infrastructure (EGI)
MetaCentrum NGI

- NGI coordinator
- users are grouped into virtual organizations (VOs)
 - a group of users having “something in common”
 - e.g., cooperating on the same project
 - may have specific HW resources assigned, specific policies set, specific technologies in use, etc.

- MetaCentrum NGI may help with:
 - establishment of a new HW centre
 - establishment of a new VO
 - integrating existing resources into grid infrastructure
 - joining a project with european infrastructures

http://www.metacentrum.cz
MetaCentrum VO (Meta VO)

- intended for students/employees of Czech universities, Academy of Sciences, various research institutes, etc.

- offers:
 - computing resources
 - storage capacities
 - application programs

- a part of CESNET’s e-infrastructure
 - data storage/repository, collaborative environment, …

- free of charge (after registration)
 - „payment“ in the form of publications with acknowledgement
 - → user priorities when the resources become fully utilized

http://metavo.metacentrum.cz
Meta VO – hardware

- resources of CESNET + involved organizations/institutions
 - ZČU, UK, MU, CERIT-SC, FZÚ AV ČR, JČU, MZLU, VUTBR, …
 - → CESNET performs the coordination

- computing resources: ca 5000 cores
 - common HD nodes (2x4-8 cores) as well as SMP nodes (32-80 cores)
 - memory up to 512 GB per node
 - Infiniband for low-latency communication (MPI apps)

- 300 TB for semi-permanent data
 - storage sites in Brno and Pilsen, accessible from all clusters
 - prospectively being connected to CESNET’s PB storage

- availability of specialized equipment
 - e.g. NVIDIA CUDA cards in Pilsen, 35TB scratch for temporary data (Brno)
Meta VO – software

- similarly to HW, obtained in cooperation with involved organizations

- development tools
 - GNU, Intel, PGI, debuggers and profiling tools (TotalView, Allinea)

- mathematical software
 - Matlab, Maple, gridMathematica

- commercial/free software for chemistry
 - Gaussian 09, Amber, Gamess, …

- material simmulations
 - Wien2k, Fluent (ZČU only)

- structural biology, bioinformatics
 - a set of freely available modules

- we’re looking for new software proposals (free/commercial)
 - possibility to buy/co-finance
Meta VO – computing environment

- **batch jobs**
 - descriptive job script
 - information about job’s start/termination

- **interactive jobs**
 - text vs. graphical mode

- **cloud environment**
 - pilot installation with CERIT-SC
 - basic compatibility with Amazon EC2
 - users **do not run jobs**, but the whole **virtual machines**
 - possibility to tune the image (Windows, Linux) and start it on MetaVO nodes
 - suitable for applications, which do not comply with the grid approach
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
CERIT-SC Centre

- an important member/partner of the Czech national grid (€MetaVO)
 I. provider of HW resources
 - SMP nodes (1600 cores, already/being installed)
 - HD nodes (>2500 cores, 600 Q2/2012)
 - storage capacity (>600 TB)
 II. services beyond the scope of “common” HW centre – an environment for collaborative research

http://www.cerit-sc.cz
CERIT-SC – main activities

- **Infrastructure**
 - interactive, convenient for experiments (highly flexible)
 - installed technology serves primarily for research and experiments
 - the latter purpose is for common computations and data storage/processing

- **Research and Development**
 - own research, focused on principles/technologies of the maintained eInfrastructure and its optimization
 - **collaborative**, comprises a design and optimization of algorithms, models, tools and environment based on the needs of our users/partners
 - → a collaboration of IT experts and users
CERIT-SC HW/SW equipment

Hardware:
- 20 nodes (zewura cluster)
 - 80 cores and 512 MB of memory per node
 - interconnected by Infiniband
 - own storage volume for user homes

Software:
- exactly the same as available on the other MetaVO nodes
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
 - How to … specify requested resources
 - How to … run an interactive job
 - How to … use application modules
 - How to … run a batch job
 - How to … determine a job state
 - How to … run a parallel/distributed computation
 - Another mini-HowTos …
 - What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
Grid infrastructure overview I.
Grid infrastructure overview II.

ssh (Linux)
putty (Windows)

All the nodes available under the domain **metacentrum.cz**

PBS/Torque servers

- arien
- wagap

Computing nodes

- non-virtualised nodes
 - mandos1
 - mandos2

- virtualised nodes
 - tarkil1
 - tarkil1-1
 - tarkil1-2
 - tarkil2
 - tarkil2-1
 - tarkil2-2

Frontends

- skirt
- konos
- nympha
- hermes
- tarkil
- zuphux

MetaCentrum hands-on seminar - JCU in České Budějovice
Grid infrastructure overview III.
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- **How to … specify requested resources**
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
before running a job, one needs to have an idea **what resources** the job requires
- and how many of them

means for example:
- number of **nodes**
- number of **cores per node**
- an **upper estimation** of job’s **runtime**
- amount of **free memory**
- amount of **scratch space** for temporal data
- number of requested **software licenses**
- etc.

the resource requirements are then **provided to** the **qsub utility**
(when submitting a job)

details about resources’ specification:
http://meta.cesnet.cz/wiki/Plánovací_systém_-_detailní_popis#Specifikace_požadavků_na_výpočetní_zdroje
How to … specify requested resources II.

Graphical way:

 - allows to:
 - graphically specify the requested resources
 - check, whether such resources are available
 - generate command line options for qsub
 - check the usage of MetaVO resources

Textual way:

- more powerful and (once being experienced user) more convenient
- see the following slides/examples →
Node(s) specification:
- general format: `-l nodes=...`

Examples:
- 2 nodes:
 - `-l nodes=2`
- 5 nodes:
 - `-l nodes=5`

- by default, allocates just a single core on each node
 - should be used together with processors per node (PPN) specification
- if “-l nodes=...” is not provided, just a single node with a single core is allocated
How to … specify requested resources IV.

Processors per node (PPN) specification:

- **General format**: `-l nodes=...:ppn=...`

- 2 nodes, both of them having 3 processors:
 - `-l nodes=2:ppn=3`

- 5 nodes, each of them with 2 processors:
 - `-l nodes=5:ppn=2`

More complex specifications are also supported:

- 3 nodes: one of them with just a single processor, the other two with four processors per node:
 - `-l nodes=1:ppn=1+2:ppn=4`

- 4 nodes: one with a single processor, one with two processors, and two with four processors:
 - `-l nodes=1:ppn=1+1:ppn=2+2:ppn=4`
How to … specify requested resources V.

Other useful nodespec features:

- **nodes just from a single (specified) cluster** (suitable e.g. for MPI jobs):
 - general format: `-l nodes=...:cl_<cluster_name>`
 - e.g., `-l nodes=3:ppn=1:cl_skirit`

- **asking for a specific node(s):**
 - general format: `-l nodes=...:<node_name>`
 - e.g., `-l nodes=1:ppn=4:manwe3.ics.muni.cz`

- **nodes located in a specific location** (suitable when accessing storage in the location)
 - general format: `-l nodes=...:<brno|plzen>`
 - e.g., `-l nodes=1:ppn=4:brno`

- **negative specification:**
 - general format: `-l nodes=...:^<feature>`
 - e.g., `-l nodes=1:ppn=4:^cl_manwe`

- ...

A list of nodes’ features can be found here: http://metavo.metacentrum.cz/pbsmon2/props
How to … specify requested resources VI.

Specifying memory resources (default = 400mb):
- general format: \(-l \text{ mem}=\ldots<\text{suffix}>\)
 - e.g., \(-l \text{ mem}=300\text{mb}\)
 - e.g., \(-l \text{ mem}=2\text{gb}\)

Specifying job’s maximum runtime (default = normal):
- it is necessary to assign a job into a queue, providing an upper limit on job’s runtime:
 - short = 2 hours, normal (default) = 24 hours, long = 1 month
- general format: \(-q <\text{queue_name}>\)
 - e.g., \(-q \text{ short}\)
 - e.g., \(-q \text{ long}\)
Specifying requested scratch space:

- useful, when the application performs I/O intensive operations
 - the scratches are **local to the nodes** (smaller) and/or **shared for the nodes** of a specific cluster over Infiniband (bigger) -- currently “mandos” cluster only
 - thus being as fast as possible
 - **scratch space (amount in Kbytes)**: `-l scratch=<amount>`
 - e.g., `-l scratch=500000` (asking for 500MB)

planned improvements (to be announced):

- making the scratch data **private for particular jobs**
 - `/scratch/$USER/job_$PBS_JOBID` directory for job’s scratch
- the **SCRATCHDIR** environment variable available in the system
 - will point to the assigned scratch space/location
- additional property to indicate a specific scratch type requested
 - `-l scratch_type=[local|shared|ssd|first]`

- reservations/quotas
How to … specify requested resources VIII.

Specifying requested software licenses:

- necessary when an application requires a SW licence
 - the job becomes started once the requested licences are available
 - the information about a licence necessity is provided within the application description (see later)
- **general format**: `-l <lic_name>=<amount>`
 - e.g., `-l matlab=2`
 - e.g., `-l gridmath8=20`

...

(advanced) Dependencies on another jobs

- allows to create a workflow
 - e.g., to start a job once another one successfully finishes, breaks, etc.
- see qsub’s “–w” option (man qsub)
Questions and Answers:

- *Why is it necessary to specify the resources in a proper number/amount?*
 - because when a job consumes more resources than announced, it will be **killed** by us (you’ll be informed)
 - otherwise it may influence other processes running on the node

- *Why is it necessary not to ask for excessive number/amount of resources?*
 - the jobs having smaller resource requirements are started (i.e., get the time slot) **faster**

- *Any other questions?*
How to … specify requested resources X.

Examples:

- Ask for a single node with 4 CPUs, 1gb of memory.
 - qsub -l nodes=1:ppn=4 -l mem=1gb

- Ask for a single node (1 CPU) – the job will run approx. 3 days and will consume up to 10gb of memory.
 - ???

- Ask for 2 nodes (1 CPU per node) not being located in Brno.
 - ???

- Ask for two nodes – a single one with 1 CPU, the other two having 5 CPUs and being from the manwe cluster.
 - ???

- …
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction
- Grid infrastructure overview
- How to ... specify requested resources
- How to ... run an interactive job
- How to ... use application modules
- How to ... run a batch job
- How to ... determine a job state
- How to ... run a parallel/distributed computation
- Another mini-HowTos ...
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
Interactive jobs:
- result in getting a prompt on a single (master) node
 - one may perform interactive computations
 - the other nodes, if requested, remain allocated and accessible (see later)

How to ask for an interactive job?
- add the option “–I” to the qsub command
- e.g., `qsub -I -l nodes=1:ppn=4:cl_mandos`

Example (valid for this demo session):
- `qsub -I -q MetaSeminar -l nodes=1`
How to ... run an interactive job II.

Textual mode: simple

Graphical mode:

- *(easier, preferred) tunnelling a display through ssh* (Windows/Linux):
 - connect to the frontend node having SSH forwarding/tunneling enabled:
 - **Linux:** `ssh -X skirit.metacentrum.cz`
 - **Windows:**
 - install an XServer (e.g., Xming)
 - set Putty appropriately to enable X11 forwarding when connecting to the frontend node
 - Connection → SSH → X11 → Enable X11 forwarding
 - ask for an interactive job, **adding “–x” option** to the qsub command
 - e.g., `qsub -I -x -l nodes=... ...

- **exporting a display** from the master node to a Linux box:
 - `export DISPLAY=mycomputer.mydomain.cz:0.0`
 - on a Linux box, run “`xhost +`” to allow all the remote clients to connect
 - be sure that your display manager allows remote connections
How to ... run an interactive job III.

Questions and Answers:

- **How to get an information about the other nodes allocated (if requested)?**
 - `master_node$ cat $PBS_NODEFILE`
 - works for batch jobs as well

- **How to use the other nodes allocated? (holds for batch jobs as well)**
 - MPI jobs use them automatically
 - otherwise, use the `pbsdsh` utility (see "man pbsdsh" for details) to run a remote command
 - if the pbsdsh does not work for you, use the `ssh` to run the remote command

- **Any other questions?**
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction
- Grid infrastructure overview
- How to ... specify requested resources
- How to ... run an interactive job
- **How to ... use application modules**
- How to ... run a batch job
- How to ... determine a job state
- How to ... run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
How to … use application modules I.

Application modules:

- the **modular subsystem** provides a user interface to modifications of user environment, which are necessary for running the requested applications
- allows to “add” an application to a user environment

- **getting a list** of available application modules:
 - `$ module avail`
 - provides the documentation about modules’ usage
 - besides others, includes:
 - information whether it is necessary to ask the scheduler for an available licence
 - information whether it is necessary to express consent with their licence agreement
How to use application modules II.

Application modules:

- **loading** an application into the environment:
 - $ module add <modulename>
 - e.g., module add maple

- **listing** the already loaded modules:
 - $ module list

- **unloading** an application from the environment:
 - $ module del <modulename>
 - e.g., module del openmpi

- **Note:** An application may require to express consent with its licence agreement before it may be used (see the application’s description). To provide the agreement, visit the following webpage: http://metavo.metacentrum.cz/cs/myaccount/eula

- for more information about application modules, see http://meta.cesnet.cz/wiki/Aplikační_moduly
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
How to ... run a batch job I.

Batch jobs:
- perform the computation as described in their **startup script**
 - the submission results in getting a **job identifier**, which further serves for getting more information about the job (see later)

- **How to submit a batch job?**
 - add the reference to the startup script to the `qsub` command
 - e.g., `qsub -l nodes=3:ppn=4:cl_mandos <myscript.sh>`

- **Example** (valid for this demo session):
 - `qsub -q MetaSeminar -l nodes=1 myscript.sh`
 - results in getting something like “12345.arien.ics.muni.cz”
How to … run a batch job II.

Startup script preparation/skelet: (non IO-intensive computations)

```bash
#!/bin/bash

DATADIR="/storage/brnol/home/$USER/"    # shared via NFSv4
cd $DATADIR

# ... initialize & load modules, perform the computation ...
```

- **further details** – see http://meta.cesnet.cz/wiki/Plánovací_systém_-_detailní_popis#Příklady_použití
How to … run a batch job III.

Startup script preparation/skelet: (IO-intensive computations or long-term jobs)

#!/bin/bash

DATADIR="/storage/brno1/home/$USER/"

prepare the input data
cp $DATADIR/vstup.txt $SCRATCHDIR || exit 1

go to the working directory and perform the computation
cd $SCRATCHDIR

... initialize & load modules, perform the computation ...

move out the output data
cp $SCRATCHDIR/vystup.txt $DATADIR

if [$? -ne 0]; then
echo Copy output data failed. Copy them manually from `hostname` 1>&2
 exit 2
fi

clean the scratch temporal directory
rm -rf $SCRATCHDIR
How to … run a batch job IV.

Using the application modules within the batch script:

- to use the **application modules** from a **batch script**, add the following line into the script (before loading the module):

```bash
  . /packages/run/modules-2.0/init/sh
  ...

  module add maple
```

Getting the job’s standard output and standard error output:

- once finished, there appear **two files** in the directory, which the job has been started from:

- `<job_name>.o<jobID>` ... standard output
- `<job_name>.e<jobID>` ... standard error output

 - the `<job_name>` can be modified via the “–N” qsub option
How to … run a batch job V.

Job attributes specification:
in the case of batch jobs, the requested resources and further job information (job attributes in short) may be specified either on the command line (see “man qsub”) or directly within the script:

- by adding the “#PBS” directives (see “man qsub”):

 #PBS -N Job_name
 #PBS -l nodes=2:ppn=1
 #PBS –l mem=320kb
 #PBS -m abe
 #
 < ... commands ... >

- the submission may be then simply performed by:

 $ qsub myscript.sh
Questions and Answers:

- Should I prefer batch or interactive jobs?
 - definitely the batch ones – they use the computing resources more effectively
 - use the interactive ones just for testing your startup script, GUI apps, or data preparation

- Any other questions?
Examples:

- Create and submit a batch script, which echoes “Hello world!” to both stdout and stderr.

- Create and submit a batch script, which performs a simple Maple computation, described in a file:

  ```maple
  plotsetup(gif,
            plotoutput=`/storage/brno1/home/<username>/myplot.gif`,
            plotoptions=`height=1024,width=768`);
  plot3d( x*y, x=-1..1, y=-1..1, axes = BOXED, style = PATCH);
  process the file using Maple (from a batch script):
    hint: $ maple <filename>
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- **How to … determine a job state**
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
How to … determine a job state I.

Job identifiers

- every job (no matter whether interactive or batch) is **uniquely identified** by its identifier (JOBID)
  - e.g., 12345.arien.ics.muni.cz
- to obtain any information about a job, the **knowledge of its identifier is necessary**
  - how to list all the recent jobs?
    - `frontend$ qstat` (run on any frontend)
  - how to list all the recent jobs of a specific user?
    - `frontend$ qstat -u <username>` (again, any frontend)
How to … determine a job state II.

How to determine a job state?

- graphical way – see PBSMON
  - list all your jobs and click on the particular job’s identifier

- textual way – `qstat` command (see `man qstat`)
  - brief information about a job: `$ qstat JOBID`
    - informs about: job’s state (Q=queued, R=running, E=exiting, C=completed, …), job’s runtime, …
  - complex information about a job: `$ qstat -f JOBID`
    - shows all the available information about a job
    - useful properties:
      - `exec_host` -- the nodes, where the job did really run
      - `resources_used, start/completion time, exit status, …`
How to … determine a job state III.

Hell, when my jobs will really start?

- nobody can tell you 😊
  - the God/scheduler decides (based on the other job’s finish)
  - we’re working on an estimation method to inform you about its probable startup

- check the queues’ fulfilment: [http://metavo.metacentrum.cz/cs/state/jobsQueued](http://metavo.metacentrum.cz/cs/state/jobsQueued)
  - the higher fairshare (queue’s AND job’s) is, the earlier the job will be started

- stay informed about job’s startup / finish / abort (via email)
  - by default, just an information about job’s abortation is sent
  - → when submitting a job, add “–m abe” option to the qsub command to be informed about all the job’s states
    - or “#PBS –m abe” directive to the startup script
How to … determine a job state IV.

**Monitoring running job’s stdout, stderr, working/temporal files**

1. via ssh, log in directly to the execution node(s)
   - how to get the job’s execution node(s)?
   - to examine the working/temporal files, navigate directly to them
     - logging to the execution node(s) is necessary -- even though the files are on a shared storage, their content propagation takes some time
   - to examine the stdout/stderr of a running job:
     - navigate to the `/var/spool/torque/spool/` directory and examine the files:
       - `$PBS_JOBID.OU` for standard output (stdout – e.g., “1234.arien.ics.muni.cz.OU”)
       - `$PBS_JOBID.ER` for standard error output (stderr – e.g., “1234.arien.ics.muni.cz.ER”)

**Job’s forcible termination**

- `$ qdel JOBID` (the job may be terminated in any previous state)
- during termination, the job turns to **E** *(exiting)* and finally to **C** *(completed)* state
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation

- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
Parallel jobs (OpenMP):

- if your application is able to use multiple threads via a shared memory, **ask for a single node with multiple processors**
  
  \[
  \text{$qsub \ -l \ nodes=1:ppn=\ldots$}
  \]

- make sure, that before running your application, the \text{OMP\_NUM\_THREADS} environment variable **is appropriately set**
  
  - otherwise, your application will use all the cores available on the node
    - → and influence other jobs…
  
  - usually, setting it to \text{PPN} is OK

    \[
    \text{$export \ OMP\_NUM\_THREADS=\$PBS\_NUM\_PPN$}
    \]
How to … run a parallel/distributed computation II.

**Distributed jobs (MPI):**

- if your application consists of multiple processes communicating via a message passing interface, **ask for a set of nodes** (with arbitrary number of processors)
  
  $$\textit{qsub -l nodes=...:ppn=...}$$

- **make sure**, that before running your application, the **openmpi** module is loaded into the environment
  
  $$\textit{module add openmpi}$$

  - then, you can use the **mpirun/mpiexec routines**
    
    $$\textit{mpirun myMPIapp}$$

    - it’s **not necessary** to provide these routines neither with the number of nodes to use (“-np” option) nor with the nodes itself (“--hostfile” option)
      
      - the computing nodes become **automatically detected** by the openmpi
Distributed jobs (MPI): accelerating their speed I.

- to accelerate the speed of MPI computations, ask just for the nodes interconnected by a **low-latency Infiniband interconnection**
  - all the nodes of a cluster are interconnected by Infiniband
  - there are several clusters having an Infiniband interconnection
    - mandos, minos, skirit, tarkil, nympha, zewura (CERIT-SC)

- **submission example:**
  
  $ qsub -l nodes=4:ppn=2:cl_mandos myMPIscript.sh

- **starting the MPI computation making use of an Infiniband:**
  
  - in a common way: $ mpirun myMPIapp
  
  - the Infiniband will be automatically detected
How to … run a parallel/distributed computation IV.

Distributed jobs (MPI): accelerating their speed II.
- to test the functionality of an Infiniband interconnection:
  - create a simple program `hello.c` as described here:
  - compile with “mpicc”
    ```
 $ module add openmpi
 $ mpicc hello.c -o hello
    ```
  - run the binary (within a job) with the following command:
    ```
 $ mpirun --mca btl ^tcp hello
    ```
Questions and Answers:

- *Is it possible to simultaneously use both OpenMP and MPI?*
  - Yes, it is. But be sure, how many processors your job is using
    - appropriately set the “-np” option (MPI) and the OMP_NUM_THREADS variable (OpenMP)

- Any other questions?
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation

**Another mini-HowTos …**

- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
how to transfer large amount of data to MetaVO nodes?

- copying through the frontends/computing nodes may not be efficient
- connect directly to the storage frontends (via SCP or SFTP)
  - `$ sftp storage-brnol.metacentrum.cz`
  - `$ scp <files> storage-plzen1.metacentrum.cz:<dir>`
  - etc.
- use FTP only together with the Kerberos authentication
  - otherwise insecure

how to secure private data?

- by default, all the data are readable by everyone
- use common Linux/Unix mechanisms/tools to make the data private
  - `r,w,x` rights for `user, group, other`
  - e.g., `chmod go= <filename>`
  - see `man chmod`
  - use “–R” option for recursive traversal (applicable to directories)
how to restore accidentally erased data

- the storage arrays (⇒ including homes) are regularly backed-up
  - several times a week
- → write an email to meta@cesnet.cz specifying what to restore
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction
- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?
- CERIT-SC specifics
- Real-world examples
What to do if something goes wrong?

1. check the MetaVO/CERIT-SC documentation, application module documentation
   ■ whether you use the things correctly
2. check, whether there haven’t been any infrastructure updates performed
   ■ visit the webpage https://meta.cesnet.cz/wiki/Provozní_změny
      ■ one may stay informed via an RSS feed
3. write an email to meta@cesnet.cz, resp. support@cerit-sc.cz
   ■ your email will create a ticket in our Request Tracking system
      ■ identified by a unique number → one can easily monitor the problem solving process
   ■ please, include as good problem description as possible
      ■ problematic job’s JOBID, startup script, problem symptoms, etc.
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction
- Grid infrastructure overview
- How to ... specify requested resources
- How to ... run an interactive job
- How to ... use application modules
- How to ... run a batch job
- How to ... determine a job state
- How to ... run a parallel/distributed computation
- Another mini-HowTos ...
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
CERIT-SC specifics

In comparison with the MetaVO infrastructure, the CERIT-SC infrastructure has several specifics:

- **own frontend** (zuphux.cerit-sc.cz)
- **own scheduling server** (wagap.cerit-sc.cz)
- **no queues** for jobs’ maximum runtime specification
  - the maximum runtime is specified via a qsub’s `walltime` parameter
CERIT-SC: job submission

From CERIT-SC frontend (zuphux.cerit-sc.cz):
- “common way” (just the `walltime` specification is necessary – see later)

From MetaCentrum frontends:
- necessary to specify the CERIT-SC’s scheduling server:
  - `skirit$ qsub –q @wagap.cerit-sc.cz –l ...
  - `skirit$ qstat –q @wagap.cerit-sc.cz`
  - `skirit$ qstat –f 12345.wagap.cerit-sc.cz`
  - ...

Note: It is also possible to submit MetaVO jobs from the CERIT-SC frontend:
- `zuphux$ qsub –q short@arien.ics.muni.cz –l ...
- `zuphux$ qstat –q @arien.ics.muni.cz`
- `zuphux$ qstat –f 12345.arien.ics.muni.cz`
- ...

- details:  [http://www.cerit-sc.cz/cs/docs/access/](http://www.cerit-sc.cz/cs/docs/access/)
CERIT-SC: maximum job's runtime specification

- **no queues**
- specified using the `qsub`'s **walltime parameter** (default value **24 hours**)
  - **general format:**
    - `-l walltime=[[hours:]minutes:]seconds[.milliseconds]`

- **examples:**
  - `$ qsub -l walltime=30 myjob.sh` - a request to submit the `myjob.sh` script, specifying it's maximum run-time in the length of 30 seconds (submitted via the CERIT-SC frontend)
  - `$ qsub -l walltime=10:00 myjob.sh` - a request to submit the `myjob.sh` script, specifying it's maximum run-time in the length of 10 minutes (submitted via the CERIT-SC frontend)
  - `$ qsub -q @wagap.cerit-sc.cz -l walltime=100:15:00 myjob.sh` - a request to submit the `myjob.sh` script, specifying it's maximum run-time in the length of 100 hours and 15 minutes (submitted via a MetaCentrum frontend)
Overview

- Brief MetaCentrum introduction
- Brief CERIT-SC Centre introduction

- Grid infrastructure overview
- How to … specify requested resources
- How to … run an interactive job
- How to … use application modules
- How to … run a batch job
- How to … determine a job state
- How to … run a parallel/distributed computation
- Another mini-HowTos …
- What to do if something goes wrong?

- CERIT-SC specifics

- Real-world examples
Real-world examples

- Mathematica/gridMathematica
- Gaussian
- MrBayes

**demo sources:**

```
/storage/brno2/home/jeronimo/MetaSeminar/20120615-JCU/
```

**command:**

```
cp -r /storage/brno2/home/jeronimo/MetaSeminar/20120615-JCU/ $HOME
```
Thank You for attending!

rebok@ics.muni.cz, pavel.fibich@cesnet.cz