

GPU acceleration on MetaCentrum nodes

Jiří Vorel

CESNET, MetaCentrum, 12 December 2022 vorel@cesnet.cz

 ŠB TECHNICKÁ
 IT4INNOVATIONS

 III
 UNIVERZITA
 NÁRODNÍ SUPERPOČÍTAČOVÉ

 OSTRAVA
 CENTRUM

....

https://metacentrum.cz

https://metavo.metacentrum.cz

- ... is the National Grid Infrastructure (NGI) operated by CESNET (part of the e-INFRA CZ)
- ... is a provider of computational resources, application tools (commercial and free/open source) and data storage (for data in active use)
- ... is free of charge
 - Users 'pay' by Acknowledgement in their research publications

https://wiki.metacentrum.cz/wiki/Usage_rules/Acknowledgement

- ... can be used only for non-commercial (academic) research
- ... is primarily dedicated to students and employees from Czech universities, the Czech Academy of Science, non-commercial research facilities etc., but we can grant access to foreign researchers and partners

- Computational resources are available to users immediately after the registration
- Individual jobs are scheduled and managed via the PBS Pro batch system
- MetaCentrum offers...
 - cca 45,000 CPU cores (x86_64)
 - SMP servers with up to 3 TB RAM, special servers with 6 and 10 TB RAM, small servers with up to 32 CPU, etc...
 - cca 400 various GPU cards (NVIDIA A10, A40, A100, RTX A4000, Tesla T4 etc.)
- Preferably CLI (Debian 11 and CentOS 7), also a GUI environment

...

oooð

....

• Before you start, read the documentation

https://wiki.metacentrum.cz https://wiki.metacentrum.cz/wiki/Beginners_guide https://wiki.metacentrum.cz/wiki/Usage_rules

• If something goes wrong, do not hesitate to contact user support

meta@cesnet.cz

https://wiki.metacentrum.cz/wiki/User_support

https://wiki.metacentrum.cz/wiki/Troubleshooting

https://wiki.metacentrum.cz/wiki/FAQ/Grid_computing

A brief introduction to how to use MetaCentrum with a preference for GPU nodes

Frontend servers

- Gateway to the entire grid infrastructure (accessible via ssh with a password, no ssh tickets)
- Frontends submit jobs to PBS servers
- Frontends are small virtual machines mainly for purposes like writing scripts for batch jobs, checking applications and user data etc.
- Do not run long and/or demanding calculations directly on frontends!
- Frontend servers usually have different home directories
- All user home directories are available from all frontends

Allocation of resources and qsub assembler

3888

https://wiki.metacentrum.cz/wiki/About_scheduling_system

- Hardware resources (CPUs, GPUs, RAM, scratch, walltime,...) are reserved by PBS
- qsub command is used to submit jobs to the queue

Users can use an interactive tool which assembles qsub command based on the selected criteria (requirements)

	Personal view	Go to metavo.metacentrum.cz -
About MetaCentrum	This page shows a personal view of the PBS sys	Current state - Personal view -
Current affairs	Jobs of user "vorel"	
Documentation and services		qsub assembler
Getting an account	user job count total queued running completed other	
My account	vorel 0 0 0 0 0	
Current state	Links	https://metavo.metacentrum.cz/pbsmon2/person
Personal view Qsub assembler	 list of my jobs personal view of storages 	<
Physical machines 7	• qsub assembler	

GPU clusters

11-

GPU clusters in MetaCentrum							
Cluster	Nodes	GPUs per node	Memory MiB	Compute Capability	CuDNN	gpu_cap=	cuda_version=
galdor.metacentrum.cz ⊡	galdor1.metacentrum.cz - galdor20.metacentrum.cz	4x A40	45 634	8.6	YES	cuda35,cuda61,cuda75,cuda80,cuda86	11.4
luna2022.fzu.cz ⊠	luna201.fzu.cz - luna206.fzu.cz	1x A40	45 634	8.6	YES	cuda35,cuda61,cuda75,cuda80,cuda86	11.4
fer.natur.cuni.cz 🗗	fer1.natur.cuni.cz - fer3.natur.cuni.cz	8x RTX A4000	16 117	8.6	YES	cuda35,cuda61,cuda75,cuda80,cuda86	11.2
zefron.cerit-sc.cz ⊠	zefron6.cerit-sc.cz	1x A10	22 731	8.6	YES	cuda35,cuda61,cuda75,cuda80,cuda86	11.2
zia.cerit-sc.cz ⊠	zia1.cerit-sc.cz - zia5.cerit-sc.cz	4x A100	40 536	8.0	YES	cuda35,cuda61,cuda75,cuda80	11.2
fau.natur.cuni.cz ঐ	fau1.natur.cuni.cz - fau3.natur.cuni.cz	8x Quadro RTX 5000	16 125	7.5	YES	cuda35,cuda61,cuda75	11.2
cha.natur.cuni.cz ⊠	cha.natur.cuni.cz	8x GeForce RTX 2080 Ti	11 019	7.5	YES	cuda35,cuda61,cuda75	11.2
gita.cerit-sc.cz ଔ	gita1.cerit-sc.cz - gita7.cerit-sc.cz	2x GeForce RTX 2080 Ti	11 019	7.5	YES	cuda35,cuda61,cuda75	11.2
adan.grid.cesnet.cz	adan1.grid.cesnet.cz - adan61.grid.cesnet.cz	2x Tesla T4	15 109	7.5	YES	cuda35,cuda61,cuda75	11.2
glados.cerit-sc.cz 🗗	glados2.cerit-sc.cz - glados7.cerit-sc.cz	2x GeForce RTX 2080	7 982	7.5	YES	cuda35,cuda61,cuda75	11.2
glados.cerit-sc.cz 🗗	glados1.cerit-sc.cz	1x TITAN V GPU	12 066	7.0	YES	cuda35,cuda61,cuda70	11.2
konos.fav.zcu.cz ⊡	konos1.fav.zcu.cz - konos8.fav.zcu.cz	4x GeForce GTX 1080 Ti	11 178	6.1	YES	cuda35,cuda61	11.2
glados.cerit-sc.cz 🗗	glados10.cerit-sc.cz - glados13.cerit-sc.cz	2x 1080Ti GPU	11 178	6.1	YES	cuda35,cuda61	11.2
zefron.cerit-sc.cz ⊠	zefron7.cerit-sc.cz	1x GeForce GTX 1070	8 119	3.5	YES	cuda35, cuda61	11.2
black1.cerit-sc.cz ⊡	black1.cerit-sc.cz	4x Tesla P100	16 280	6.0	YES	cuda35, cuda60	11.2
grimbold.metacentrum.cz ⊮	grimbold.metacentrum.cz	2x Tesla P100	12 198	6.0	YES	cuda35, cuda60	11.2
zefron.cerit-sc.cz ⊠	zefron8.cerit-sc.cz	1x Tesla K40c	11 441	3.5	YES	cuda35	11.2

Qsub assembler for PBSPro

This page assist in assembling correct parameters for the qsub command that is used for submitting jobs in PBSPro planners.

Only computing resources avaliable to the user vorel are offered.

	ous=1	s= 0 · :mem=	400 mb ·	scratch_loca	al ~ = 40	00 mb ~	gsub -l v
cluster	~						Lool
city	~						-i sei
SPECfp2017 per core	•						cluste
other resources							oitre
:biocev=							
:caroups=	~						SPEC
:cluster=	~						other
:cpu_flag=	~						
:cpu_vendor=	~						ar :ar
:cuda_version=	~						
:gpu_cap=	~						
:host=		~					0 ~ -q (
:hyperthreading=	~	_					, indpute
:infiniband=	~						ngpus
:luna=							~
:os=							
:osfamily=	·						
:pbs_server=		~					
:pruhonice=	·						~
:scratch_shm=	~						
:vestec=							
:vnode=	·						

0-

....

- 0000ď

...

Queues

- Not all visible queues are suitable for direct usage
- GPU calculations **must be** submitted to GPU queues
- Explore the -q option of the qsub assembler

qsub -l walltime= 1 ·: 0 ·: 0 (-c	l I)∕ default@meta-p
-l select= 1 view :ncpus= 1 view :ngp	default@cerit-p
cluster	oven@meta-pb
city `	gpu@meta-pbs
other resources	gpu_long@meta
:arch=	
:biocev=	global@meta-pl
:cgroups=	backfill@meta-p
:cluster=	cloud@meta-ph
:cpu_flag=	gpu@cerit-pbs.
:cpu_vendor=	pni@cent-pps.c
:cuda_version=	global@cerit-pb
:debian10=	uv@cerit-pbs.ce
:gpu_cap=	large_mem@elix
:host=	global@elixir-pt
:hyperthreading=	elixircz@elixir-p
·infinihand=	

default@meta-pbs.metacentrum.cz
default@cerit-pbs.cerit-sc.cz
oven@meta-pbs.metacentrum.cz
gpu@meta-pbs.metacentrum.cz
gpu_long@meta-pbs.metacentrum.cz
global@meta-pbs.metacentrum.cz
global@meta-pbs.metacentrum.cz
global@meta-pbs.metacentrum.cz
gpu@cerit-pbs.cerit-sc.cz
global@cerit-pbs.cerit-sc.cz
uv@cerit-pbs.cerit-sc.cz
large_mem@elixir-pbs.elixir-czech.cz
global@elixir-pbs.elixir-czech.cz

GPU jobs with walltime up to 24 hours on MetaCentrum nodes

....

0000

GPU jobs with walltime up to 336 hours on MetaCentrum nodes

GPU jobs up to 24 hours on CERIT-SC nodes

qsub -l walltime= 48 ·: 0 ·: 0	· -q gpu_long@meta-pbs	s.metacentrum.cz · \	
-l select= 1	:ngpus=1 · :mem=	20 gb · :scratch_ local · =	200 gb ~

111

Find machines mathing the resource specification

selection from command line

qsub -l walltime=48:0:0 -q gpu_long@meta-pbs.metacentrum.cz -l select=1:ncpus=1:ngpus=1:mem=20gb:scratch_local=200gb

selection in shell script

#!/bin/bash

- #PBS -q gpu_long@meta-pbs.metacentrum.cz
- #PBS -l walltime=48:0:0
- #PBS -l select=1:ncpus=1:mem=20gb:scratch_local=200gb
- #PBS -N my_awesome_job

Result

ок

The requirement is 1 machine, and 3 such machines are free, out of 19 machines matching the requirements. The job may be started immediately. it.

Machines available right now

adan4 (7 CPU, 5.9 SPEC,	galdor8 (7 CPU,	galdor10 (6 CPU,
164.6 GiB RAM, 710.6	8.0 SPEC, 169.8 GiB RAM, 6.5	8.0 SPEC, 455.7 GiB RAM, 6.
GiB HDD)	PiB HDD)	PiB HDD)

All nodes matching the selection

adan1 (6 CPU, 5.9 SPEC, 174.6 GIB RAM, 568.5 GIB HDD)	adan2	adan3	adan4 (7 CPU, 5.9 SPEC, 164.6 GIB RAM, 710.6 GIB HDD)	adan5
adan6 (7 CPU, 5.9 SPEC,	adan7 (7 CPU, 5.9 SPEC,	adan8 (5 CPU, 5.9 SPEC,	adan9 (6 CPU, 5.9 SPEC,	adan10 (7 CPU, 5.9 SPEC,
77.6 GiB RAM, 709.3	157.6 GiB RAM, 736.6	76.6 GiB RAM, 717.3	176.6 GiB RAM, 620.0	82.6 GiB RAM, 739.9
GiB HDD)	GiB HDD)	GiB HDD)	GiB HDD)	GiB HDD)
galdor1 (64 CPU,	galdor3 (6 CPU,	galdor4 (7 CPU,		
8.0 SPEC, 503.8 GIB RAM, 6.5	8.0 SPEC, 449.8 GiB RAM, 6.5	8.0 SPEC, 136.8 GIB RAM, 6.5	galdor5	galdor6
PiB HDD)	PiB HDD)	PiB HDD)		
· ·	· · · · · · · · · · · · · · · · · · ·			
galdor7 (4 CPU,	galdor8 (7 CPU,		galdor10 (6 CPU,	
galdor7 (4 CPU, 8.0 SPEC, 167.8 GIB RAM, 6.5	galdor8 (7 CPU, 8.0 SPEC, 169.8 GiB RAM, 6.5	galdor9	galdor10 (6 CPU, 8.0 SPEC, 455.7 GiB RAM, 6.5	

Some hints for GPU reservation

3888

- Each GPU calculation needs at least one CPU (ncpus=1)
- Remember that the newest GPU is NOT the best for all jobs
- GPU card can not be shared and is entirely dedicated to one calculation
- GPU calculations can be monitored on the same computation nodes by *nvidia-smi* command
- In most cases is not wise to target one specific cluster (e.g. :cl_adan=True), select a smaller set of machines using parameters:

https://wiki.metacentrum.cz/wiki/GPU clusters

- :gpu_mem=20gb
- :gpu_cap=cuda80
- :cuda_version=11.4

Example 1: Basecalling of ONT (Oxford Nanopore Technologies) reads in an interactive job

 Basecalling is a process how to determine individual nucleotides (DNA/RNA) from a characteristic electrical signal

- GPU card with at least 20 GB of memory
- data processing toolkit Guppy with GPU support https://wiki.metacentrum.cz/wiki/Guppy
- input data in fast5 format (small data set for test)
- We will use an interactive job (calculation is waiting for individual commands typed by user)
- 1) Login to some frontend https://wiki.metacentrum.cz/wiki/Beginners_guide#Run_interactive_job

2) Check the availability of guppy software (via *module ava* command)

....

3002

(BULLSEYE)vorel@nymp	pha:~\$ module ava guppy				
guppy-3.0.3	guppy-3.6.0	guppy-4.5.4-gpu	/packages/run/i guppy-6.0.1-cpu guppy-6.0.1-apu	modules-2.0/modulefiles guppy-6.0.6-cpu guppy-6.0.6-cpu	guppy-6.3.8-gpu
guppy-3.5.1	guppy-4.5.4-cpu	guppy-5.0.15-gpu	guppy-6.0.1-gpu-singu	larity guppy-6.3.8-cpu	

• 3) Start the interactive job with appropriate hardware resources and set the calculation

Start the interactive job instead of the regular batch job

(BULLSEYE)vorel@nympha:~\$ qsub -I]l walltime=4:0:0 -q gpu@meta-pbs.metacentrum.cz -l select=1:ncpus=1:ngpus=1:mem=30gb:scratch_local=20gb:gpu_mem=20gb qsub: waiting for job 13632463.meta-pbs.metacentrum.cz to start qsub: job 13632463.meta-pbs.metacentrum.cz ready

(BULLSEYE)vorel@galdor4:~\$ cd \$SCRATCHDIR (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ cp -r /storage/praha5-elixir/home/vorel/ONT_input . (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ module add guppy-6.3.8-gpu (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ guppy_basecaller --version : Guppy Basecalling Software, (C) Oxford Nanopore Technologies plc. Version 6.3.8+d9e0f64, minimap2 version 2.22-r1101

Variable SCRATCHDIR is set automatically for each calculation

• 4) Run the calculation

....

oooð

(BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ guppy_basecaller -i ./ONT_input -r -s out_fastq_reads --flowcell FLO-MIN106 --kit SQK-LSK109 \ > -x auto --gpu_runners_per_device 16 --num_callers 16 --chunks_per_runner 2000 --trim_strategy none --disable_gscore_filtering CRASHPAD MESSAGE: ONT Guppy basecalling software version 6.3.8+d9e0f64, minimap2 version 2.22-r1101 config file: /afs/ics.muni.cz/software/guppy/6.3.8-gpu/data/dna_r9.4.1_450bps_hac.cfg model file: /afs/ics.muni.cz/software/guppy/6.3.8-gpu/data/template_r9.4.1_450bps_hac.jsn ./ONT_input input path: save path: out_fastq_reads chunk size: 2000 chunks per runner: 2000 records per file: 4000 num basecallers: 16 apu device: auto kernel path: runners per device: 16

Use of this software is permitted solely under the terms of the end user license agreement (EULA).By running, copying or accessing this software, you are demonstrating your acc The EULA may be found in /afs/ics.muni.cz/software/guppy/6.3.8-gpu/bin Found 2004 input read files to process. Init time: 34337 ms

0% 10 20 30 40 50 60 70 80 90 100<u>/</u>

Caller time: 5003 ms, Samples called: 46685374, samples/s: 9.33148e+06 Finishing up any open output files. Basecalling completed successfully.

5) In the meantime, when the calculation is running, you can open the second terminal, login to the same node and check the GPU utilisation by *nvidia-smi* command

NVIDIA	-SMI	470.1	.03.01 Driver	Vers	sion: 470.103.01	CUDA Versio	on: 11.4
GPU N Fan T	ame emp	Perf	Persistence-M Pwr:Usage/Cap	+ Bus 	s-Id Disp.A Memory-Usage	-+ Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
3 N 0%		A40 P0	0n 267W / 300W	+	000000:E1:00.0 Off 5527MiB / 45634MiB	 98% 	0 Default N/A
Proces GPU	ses: GI ID	CI ID	PID Ty		Process name		GPU Memory Usage
0 1 3	N/A N/A N/A	N/A N/A N/A	27676 728948 255837	C C C	x/DualSPHysics python guppy_basecaller	5.0_linux64	2001MiB 17129MiB 25523MiB
				NO			

6) Check the result and clean everything

(BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ ls ONT_input guppy_basecaller-core-dump-db out_fastg_reads (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ ls out_fastq_reads/ fastq_runid_78490aa79c827ee6f0554c0e8a22faedd299a6fb_0_0.fastq_guppy_basecaller_log-2022-12-12_00-35-55.log_guppy_basecaller_log-2022-12-12_00-38-28.log_sequencing_summary.txt guppy_basecaller-core-dump-db guppy_basecaller_log-2022-12-12_00-37-25.log guppy_basecaller_log-2022-12-12_00-52-14.log sequencing_telemetry.js (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ mv out_fastg_reads /storage/praha5-elixir/home/vorel/ (BULLSEYE)vorel@aaldor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ rm -rf * (BULLSEYE)vorel@galdor4:/scratch.ssd/vorel/job_13632463.meta-pbs.metacentrum.cz\$ exit logout qsub: job 13632463.meta-pbs.metacentrum.cz completed (BULLSEYE)vorel@nympha:~\$ Move only desired results back to the storage Always remove everything unnecessary Quit the interactive calculation 18 3888

Example 2: PyTorch MNIST training with Singularity container in batch job

- We will use the PyTorch Singularity image to train a MNIST model (Handwritten digit recognition)
- Requirements:
 - Basic test, no special HW requirements
 - Singularity
 - Torch
- We will use a batch job (all commands are in one shell script)
- 1) Login to some frontend

https://wiki.metacentrum.cz/wiki/Singularity

https://wiki.metacentrum.cz/wiki/Beginners_guide#Run_batch_jobs

#!/bin/bash

#PBS -q gpu@meta-pbs.metacentrum.cz

#PBS -1 walltime=1:0:0

#PBS -l select=1:ncpus=1:ngpus=1:mem=20gb:scratch_local=10gb:gpu_cap=cuda61
#PBS -N GPU_pytorch_test_job

test if a scratch directory exists
test -n "\$SCRATCHDIR" || { echo >&2 "Variable SCRATCHDIR is not set!"; exit 1; }

move into the scratch directory
cd \$SCRATCHDIR

download test data
wget https://github.com/pytorch/examples/archive/refs/heads/master.zip
unzip master.zip
cd ./examples-main/word_language_model

start the calculation
singularity exec --nv -B \$SCRATCHDIR \
/cvmfs/singularity.metacentrum.cz/NGC/PyTorch\:22.10-py3.SIF `
python ./main.py --cuda --epochs 6

clean the scratch automatically

Let's specify a version of compute capability for demonstration purposes

Automatically remove data from the scratch directory

....

• 3) Submit the calculation and check logs

Thank you for your attention

